Kathmandu University School of Management Bachelor of Business Administration Course Syllabus

	MATHEMATICS-II
Course Title	
Course Code Number	MAS 102
Credit Hours	3
Course Objective	
Main Objective	The objective of the course is to provide the students with basic knowledge of calculus that is
	applicable in various areas of management.
Learning Unit	
Learning Unit One	1. Limits And Continuity
Net Contact Hours -6 hrs	Properties of Limits, Limits at infinity, Continuity, Locating Discontinuities.
Learning Unit Two	2. Differentiation
Net Contact Hours - 12 hrs	Derivative, Rules for Differentiation, Derivative as a Rate of Change, Differentiability and
	Continuity, Product and Quotient Rules, Chain Rule and Power Rule, Derivatives of
	Logarithmic Functions, Derivatives of Exponential Functions, Elasticity of Demand, Implicit
	Differentiation, Logarithmic Differentiation, Higher-Order Derivatives.
Learning Unit Three	3. Curve Sketching
Net Contact Hours - 8 hrs	Relative extrema, First derivative test, curve sketching using first derivative test, Absolute
	extrema on a Closed Interval, Concavity and inflection points, Second Derivative Test,
T	Asymptotes, Applied Maxima and Minima.
Learning Unit Four	4. Integration
Net Contact Hours - 7 hrs	Indefinite Integral, Integration with Initial Conditions, More Integration Formulas,
	Techniques of Integration, Summation, Definite Integral, Fundamental Theorem of Integral
T	Calculus, Area between Curves, Consumers' and Producers' Surplus.
Learning Unit Five Net Contact Hours - 6 hrs	5. Methods and Applications of Integration Integration by Parts, Integration by Partial Fraction, Differential Equations, Applications of
Net Contact Hours - o ms	Differential Equations.
Learning Unit Six	6. Multivariable Calculus
Net Contact Hours - 9 hrs	Functions of Several Variables, Partial Derivatives, Application of Partial Derivatives,
Net Contact Hours - 9 ms	Implicit Partial Differentiation, Higher-order Partial Derivatives, Chain Rule, Maxima and
	Minima for Functions of Two Variables, Lagrange Multipliers, and Multiple Integrals.
Total Contact Hours	48 hrs (excluding assessment and final examination)
Basic Text	Haeussler, E. F., Richard S. P., & Wood R. J. (2010). Introductory Mathematical Analysis
Duble Teat	(13 th ed.), USA: Pearson Prentice Hall.
Evaluation Scheme	In-Semester evaluation 50%
	End-Semester evaluation 50%
	Total 100%

Updated February 2017